
Finding treasure in an embarassment of riches:
toward a more effective software catalog

Michael Hucka

Caltech, Pasadena, CA

There is a wealth of software now available, and
more is being created. Yet, finding software for a
given purpose remains surprisingly difficult. Few
resources exist to help users discover alternatives or
understand the differences between them.

What is the problem?

What’s wrong with Googling to find software?

Acknowledgments

mhucka@caltech.edu
Matthew J. Graham mjg@caltech.edu
John C. Doyle

This work is funded by NSF EAGER #1533792.

What’s wrong with asking your colleagues?

What’s wrong with asking on social media?

What’s wrong with looking in the literature?

What is our goal? What do people want?

Is there a better alternative?

▪ Must pick good terms. Difficult to do, worse for
nonnative English speakers or field outsiders.

▪ Too many results. The relevant software can be
buried and difficult to find.

▪ Hard to tell differences between results. Google
results don’t show software features—you must
investigate each result & compare them yourself.

▪ Unknown unknowns. Most people don’t know
about all possible options or how they compare.

▪ Answers are potentially biased. What people do
know may be out of date or incorrect.

▪ Same problems as asking colleagues.

▪ Cannot predict when (or if) you get an answer.

▪ Publication lag. Information is often out of date,
potentially leading you down the wrong path.

▪ Not all software has an associated paper or is
mentioned in other people’s papers.

▪ Doing thorough research is time-consuming.

A comprehensive software index could make it
easier to find software by providing pertinent
results organized with contextual information and
specific details about each software resource. This
would help users find software more effectively and
compare alternatives more systematically.

Past cataloguing efforts have failed either because
they were simplistic (thus providing incomplete,
misleading or unhelpful content) or relied on
humans. Humans don’t scale—automation is the
only feasible way of cataloging the vast and ever-
growing number of constantly-evolving software
applications, libraries and other sources.

Happily, the growing trend of putting software in
repositories such as GitHub opens new avenues.

We ran a survey in 2015 to understand how people
find software and what kind of info would be useful
in a catalog. Our 22-question survey went to mailing
lists in astronomy and systems biology. We received
69 responses. Demographics: people’s top 3 work
responsibilities were software development (82%),
software architecture (54%), and project management
(46%); people had 1–45 yrs of software development
experience, in small- to medium-sized teams.

What information should be captured in a catalog?
We asked “Suppose it were possible to create a public,
searchable catalog or index of software, one that would
record information about software of all kinds found
anywhere. What kind of info would you find most useful
to include for each entry in such a catalog or index?”
The graph below summarizes the results.

How are we proceeding?

How does our project differ from other related work?

What is our approach?

We seek to automate a continually-updated index of
software for users, particularly scientists. This will
require overcoming two challenges: effective software
discovery and accurate software characterization.

Our research question is: can an ontology-based
approach to software characterization produce
results that humans find acceptable?

1. Infer software characteristics via ontology-based,
hierarchical multi-label classification

2. Apply the methods to SourceForge and GitHub
projects to characterize software

3. Leverage the ontology to improve search

4. Provide a demo interface and evaluate the results

Other groups have explored methods to index software, and text-based source code analysis using machine
learning is not new. However, past accuracies have been modest, making the methods unsuited for reliable
software cataloging, and the project goals have also been different. Crucially, past work has not explored
using semantic knowledge to assist the classification process and organize the results for human use.

Does it really matter?
Lacking better info, people often don’t use the best
or most appropriate software, and sometimes
unwittingly recreate existing tools. Time and
money are wasted, reproducibility suffers, and
funding agencies get poor return on investment.

▪ Linares-Vásquez, et al. (2014). On using machine learning to automatically classify software applications into domain
categories. Empirical Software Engineering, 19(3).

▪ Linstead, et al. (2008). Mining internet-scale software repositories. Advances in Neural Information Processing Systems, 20.
▪ McMillan, et al. (2012). Exemplar: A source code search engine for finding highly relevant applications. IEEE Trans Soft. Eng., 38(5).
▪ Ugurel, et al. (2002). What's the code? Automatic classification of source code archives. In KDD '02.

Other
Specific workflow environments supported

Metrics evaluating code quality
Whether the code base is well commented
Whether the code base includes test cases

Whether installation uses common facilities or tools
Availability of public issue/bug tracker

Name(s) of developer(s)
Availability of support or help

Whether a publication is associated with the software
Whether a programmable API is available

How active development appears to have been over time
Availability of discussion lists/forums

Type(s) of user interfaces offered (e.g., GUI)
Programming language(s) software is written in

Whether source code is available
Software libraries needed

How recently has the software been updated
Data formats supported

URL for software’s home page
License terms of software

Domain/subject/field of application
Name of software

Purpose of software
Operating system(s) supported

Total responses: 69
Multiple selections allowed10 (14)%

17 (25)%
18 (26)%
18 (26)%

20 (29)%
27 (39)%

29 (42)%
30 (43)%

34 (49)%
34 (49)%

36 (52)%
37 (54)%
38 (55)%
39 (57)%
39 (57)%

42 (61)%
47 (68)%

49 (71)%
53 (77)%
53 (77)%
54 (78)%
54 (78)%

61 (88)%
63 (91)%
63 (91)%

After acquiring and setting up server hardware, we
created a basic crawling system for GitHub. We
generated an index of over 25,000,000 public
repositories (e.g., names, descriptions, URLs, etc.),
obtained programming language info for 15,000,000
of those, README files for 2,000,000, and finally,
downloaded full repository copies for 330,000.

Developing a suitable ontology will be a challenge,
though starting points exist (see #2). To help, we are
exploring inference methods to infer topic hierarchies.

We first applied a probabilistic generative model to
1,000,000 one-line project descriptions in GitHub,
using a hierarchical Dirichlet process (a
nonparametric extension of LDA in which the
number of topics is learned from the data). We
employed a maximal spanning tree approach to infer
a hierarchy from the generative model using corpus-
derived probabilities for topics. It failed to produce a
robust topic hierarchy. Next: try all 25,000,000 one-
line descriptions and also project README files.

We are currently working on the next three of
several steps that will culminate in the creation of a
demonstration system: CASICS, the Comprehensive
and Automated Software Inventory Creation System.

1. Exploring hierarchical topic inference

2. Extending existing ontologies
In terms of existing ontologies, SWO, the Software
Ontology (http://theswo.sourceforge.net), is the
closest to our needs. It provides terms for topics,
data formats, software licenses, and more. We are
working with the SWO developers to extend it.

With colleagues at NIST, we are also exploring the
use of the NIST Dictionary of Algorithms and Data
Structures (https://xlinux.nist.gov/dads/).

3. Writing feature extractors
Extracting features from an input is the first step in
classification. The input here is the set of files in a
project. For source code, we expect an identifier
expansion step (e.g., to expand abbreviations) will
improve classification. We are implementing
algorithms published by others: TRIST (Guerrouj et
al, 2012) and GenTest (Lawrie et al., 2006).

Other developments are forthcoming …

