
Towards an automated cataloging system
for open-source software: the CASICS project

Michael Hucka

Caltech, Pasadena, CA

There is a wealth of software now available, and
more is being created. Yet, finding software for a
given purpose remains surprisingly difficult. Few
resources exist to help users discover alternatives
or understand the differences between them.

What is the problem?

What’s wrong with Googling to find software?

mhucka@caltech.edu
Matthew J. Graham mjg@caltech.edu
John C. Doyle

This work is funded by
NSF EAGER #1533792.

What’s wrong with asking your colleagues?

What’s wrong with asking on social media?

What’s wrong with looking in the literature?

What is our goal?

Is there a better alternative?

▪ Must pick good terms. Difficult to do, more so for
non-native English speakers or field outsiders.

▪ Too many results. The relevant software can be
buried and difficult to find.

▪ Hard to tell differences between results. Google
results don’t show software features—you must
investigate each result & compare them yourself.

▪ Unknown unknowns. Most people don’t know
about all possible options or how they compare.

▪ Answers are potentially biased. What people do
know may be out of date or incorrect.

▪ Same problems as asking colleagues.

▪ Cannot predict when (or if) you get an answer.

▪ Publication lag. Information is often out of date,
potentially leading you down the wrong path.

▪ Not all software has an associated paper or is
mentioned in other people’s papers.

▪ Doing thorough research is time-consuming.

A comprehensive software index could make it
easier to find software by providing pertinent
results organized with contextual information and
specific details about each software resource. This
would help users find software more effectively and
compare alternatives more systematically.

Past cataloguing efforts have failed either because
they were simplistic (thus providing incomplete,
misleading or unhelpful content) or relied on
humans. Humans don’t scale—automation is the
only feasible way of cataloging the vast and ever-
growing number of constantly-evolving software
applications, libraries and other sources.

How can software be analyzed?

We are developing CASICS, the Comprehensive and
Automated Software Inventory Creation System.
Our goals are to develop a proof of concept:

1. Infer software characteristics via ontology-based,
 hierarchical multi-label classification

2. Apply the methods to GitHub and SourceForge
 software projects to characterize software

3. Leverage the ontology to improve search

4. Provide a demo interface and evaluate the results

Why does it matter?
Lacking better info, people often don’t use the best
or most appropriate software, and sometimes
unwittingly recreate existing tools. Time and
money are wasted, reproducibility suffers, and
funding agencies get poor return on investment.

We developed a repository-crawling system in
Python and a MongoDB-based database, which we
use as a local index and summary of over
65,000,000 public repositories in GitHub.

We performed a survey of users and developers. It
revealed the information people would like to see in
a catalog. The dozen most desirable bits of info are:

We began with SWO, the Software Ontology (http://
theswo.sourceforge.net). It provides terms for
topics, data formats, software licenses, and more.

However, the huge breadth of topics found in
projects in GitHub has made us look for a larger
subject ontology. We settled on the Library of
Congress Subject Headings (LCSH).

What information do people want?

A number of software features can be inferred by
recognizing specific entities in the project sources.

▪ File features. File extensions (.py, .java, etc),
specific build system files (e.g., setup.py), and
others strongly imply certain software features.

▪ Project descriptions and README files. When
available, they can used as input to text mining to
infer topics and other aspects of a project.

▪ Source code. The code comments, function/class
identifiers, text strings, documentation strings,
imported libraries, and other elements can be
used as input to text-based classification.

How are we doing classification?

However, entity recognition can only help discover
some features. Inferring subjects and topics needs a
more powerful approach based on machine learning.

The features used by the classifiers are elements
extracted from source code via language-aware
parsers (for function names, class names, variable
names, library names, doc strings, text strings,
comments) and text extracted from document
files via converters for plain text, Markdown,
HTML, and other file types.

Clustering the text extracted from project
descriptions and README files using t-SNE and
then running DBSCAN to identify clusters is
helping us derive a leaner topic hierarchy.

Which ontologies are we using?

We created a database system for storing and
navigating the graph of LCSH terms, and created
an annotation system to let us pick terms.

In addition to using LCSH, we developed new
ontologies to characterize capabilities including:

▪ Interfaces: user interfaces, programming
interfaces, and network interfaces offered by a
software system.

▪ Software kind: whether something is user
software, library software, server software, etc.

How are we labeling software projects?

We created a custom annotation interface using
Node.js, JavaScript, and Bootstrap. We use this to
select ontology terms to describe software projects.

▪ Operating system(s) supported

▪ Purpose of software

▪ Name of software

▪ License terms

▪ Domain/subject/field of application

▪ URL for home page

▪ Data formats supported

▪ How recently software was updated

▪ Software libraries needed

▪ Whether source code is available

▪ Programming languages used in implementation

▪ Type(s) of user interfaces offered

Gathering and inferring this information from
repositories automatically is the goal of CASICS.

These features are used as input into supervised,
hierarchical multi-label classifiers to label software
with respect to predefined ontologies.

An advance compared to prior work is using
identifier expansion to convert typical function and
variable identifiers (e.g., “readfromdb”) into more
meaningful strings (e.g. “read from database”).

We are using our manually-annotated database of
software to train hierarchical multi-label
classification algorithms. We are exploring two in
particular (Chained Path Evaluation, and HiBLADE).

With trained classifiers in hand, we will be able to
categorize and infer properties about new/unseen
software projects, and use this to generate a
hierarchically-organized software catalog.

How will we build a catalog?

